Research on the operation modes of hydropower station based on complementary characteristics

Wenliang Yin¹*, Miaoqing Xiang²

¹Chongqing Water Resources and Electric Engineering College/Changdu Prefecture Water Resources Bureau, Tibet
²Zhong County Water Supplies Bureau, Chongqing/Changdu Prefecture Water Resources Bureau, Tibet

Abstract

Including wind-PV-ES (Wind/Photovoltaic/Energy storage) hybrid power generation system into the scheduling system of grid is the development tendency of safe grid-connection and operation of large wind-PV-ES hybrid power generation system. To solve the active power control problems in hybrid power generation system, this paper analyzes genetic algorithm and quantum genetic algorithm, and also analyzes the importance of energy storing devices in scheduling. Based on this, an optimization model of active power in wind-PV-ES is established. With the expectation of power output fluctuation of the power generation system as the objective function, the optimal scheduling scheme for the model is sought through genetic algorithm and quantum genetic algorithm respectively. The results of Matlab experiment show that the optimal scheduling scheme obtained by means of quantum genetic algorithm is superior to the scheduling scheme obtained by means of traditional genetic algorithm.

Keywords: Hybrid power generation system, Power control, Genetic algorithm, Quantum genetic algorithm

1 Introduction

With the developing of industry in modern times, energy problems have become a puzzle challenging the economic development of all countries in the world. As traditional energies are limited, for instance, petroleum and coal resources, in addition, traditional energies may bring unrecoverable damages to the environment, therefore, the development strategy of “Vigorously developing hydropower, optimally developing thermal power, actively developing nuclear power, and industriously to developing new energies” has been recognized by all countries in the world in recent years [1].

As a technically mature renewable energy power generation, hydropower is an important measure to guarantee energy supply. With the advantages of renewability, low operation expenses, being clean and environmental-friendly, strong ability in peak-load shaving and frequency modulation and the ability of restoring biological environment etc., more and more attention has been paid to hydropower. The construction of hydropower stations has taken shape in China. By far, over 170 hydropower stations have been built in 12 hydropower bases in upper and middle reaches of the Yellow River and Wujiang in China [2]. See Table 1 for the conditions of hydropower stations.

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Total storage (hundred million m³)</th>
<th>Normal water level (m)</th>
<th>Installed capacity (ten thousand kw)</th>
<th>Annual energy output (hundred million kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Three Gorges</td>
<td>393</td>
<td>175</td>
<td>1820</td>
<td>847</td>
</tr>
<tr>
<td>The Gezhou Dam</td>
<td>15.8</td>
<td>66</td>
<td>271.5</td>
<td>157</td>
</tr>
<tr>
<td>Ertan</td>
<td>58</td>
<td>1200</td>
<td>3300</td>
<td>170</td>
</tr>
<tr>
<td>Gongnai</td>
<td>3.1</td>
<td>48</td>
<td>70</td>
<td>34.18</td>
</tr>
<tr>
<td>Liyanan</td>
<td>7.27</td>
<td>1618</td>
<td>240</td>
<td>97.53</td>
</tr>
<tr>
<td>Ahai</td>
<td>8.82</td>
<td>1504</td>
<td>200</td>
<td>88.77</td>
</tr>
<tr>
<td>Guanyinyan</td>
<td>20.72</td>
<td>1134</td>
<td>300</td>
<td>122.4</td>
</tr>
<tr>
<td>Wudongde</td>
<td>76</td>
<td>975</td>
<td>870</td>
<td>387</td>
</tr>
<tr>
<td>Baihetan</td>
<td>188</td>
<td>820</td>
<td>1200</td>
<td>515</td>
</tr>
<tr>
<td>Xilaodu</td>
<td>126.7</td>
<td>600</td>
<td>1386</td>
<td>571.2</td>
</tr>
<tr>
<td>Xiangjiaba</td>
<td>51.63</td>
<td>380</td>
<td>640</td>
<td>307.47</td>
</tr>
<tr>
<td>Shuibuya</td>
<td>45.8</td>
<td>400</td>
<td>1600</td>
<td>39.2</td>
</tr>
<tr>
<td>Gaobazhou</td>
<td>4.3</td>
<td>80</td>
<td>25.2</td>
<td>8.98</td>
</tr>
<tr>
<td>Geheyang</td>
<td>34</td>
<td>200</td>
<td>120</td>
<td>30.4</td>
</tr>
<tr>
<td>Longyangxia</td>
<td>247</td>
<td>2600</td>
<td>128</td>
<td>23.6</td>
</tr>
<tr>
<td>Lijiaxia</td>
<td>16.5</td>
<td>2180</td>
<td>200</td>
<td>59</td>
</tr>
<tr>
<td>Luijiaxia</td>
<td>57</td>
<td>1735</td>
<td>122.5</td>
<td>55.8</td>
</tr>
<tr>
<td>Yangzhou</td>
<td>2.2</td>
<td>1619</td>
<td>45.2</td>
<td>22.4</td>
</tr>
<tr>
<td>Wanjiangzai</td>
<td>8.96</td>
<td>977</td>
<td>108</td>
<td>27.5</td>
</tr>
<tr>
<td>Tianqiao</td>
<td>0.67</td>
<td>834</td>
<td>12.8</td>
<td>6.07</td>
</tr>
<tr>
<td>Luijiaxia</td>
<td>57</td>
<td>1735</td>
<td>122.5</td>
<td>55.8</td>
</tr>
<tr>
<td>Xiaolangdi</td>
<td>126.5</td>
<td>275</td>
<td>180</td>
<td>51</td>
</tr>
<tr>
<td>……</td>
<td>……</td>
<td>……</td>
<td>……</td>
<td>……</td>
</tr>
</tbody>
</table>

See Figure 1 for the typical diagram of hydropower station.

* Corresponding author e-mail: yinwcq@163.com
Each evolutionary algorithm has its own advantages and disadvantages. To make multiple intelligence algorithms complement each other's advantages, integrating different algorithms for intelligent optimization by following the thought of "optimal combination" is an important research direction [4]. In this paper, quantum genetic algorithm (QGA) and quantum-behaved particle swarm algorithm are adopted by integrating quantum genetic algorithm and quantum-behaved particle swarm algorithm, and comparing the results obtained by means of the new algorithm with the results obtained by means of traditional algorithms.

2 Introduction to the algorithms

Genetic algorithm is a random search algorithm deduced by simulating biological evolutionism (the principle of survival of the fittest in natural selection, i.e., selecting the superior and eliminating the inferior) in biology. It adopts a probabilistic method, which can quickly acquire the optimal space, and adjust the searching direction automatically without presetting the searching rules. This technology has been widely applied to sectors such as solving combination optimization solution, artificial intelligence, digital processing and machine learning etc. Quantum genetic algorithm is the product of the combination of quantum computation and genetic algorithm. This algorithm makes all the individuals in the space form an independent sub-swarm according to certain rules, and traverses each individual by coding; then it evolves each individual by means of quantum rotating gate method and dynamic adjusting rotation angle, with each individual subject to independent evolution, thus obtaining the optimal individual [5, 6].

2.1 GENETIC ALGORITHM

Genetic algorithm can be simply narrated as problems that the genes in organisms seek the most dynamic chromosome. Like the nature, for the answer designated by the configuration, what genetic algorithm needs to do is to obtain the daughter chromosome with better viability through genetic algorithm [7]. In this algorithm, firstly, some number codes (i.e. chromosome) of the target problem are produced randomly, and these number codes shall be defined as the first generation population. Fitness assessment shall be carried out on each individual with the preset fitness function, in which the individuals with poor fitness shall be weeded out and the individuals with good fitness shall be selected for offspring inheritance. The inherited individuals shall form a new population which becomes the second generation population, and the third, the fourth generation subject to inheritance.

Steps of algorithm:

Step 1: Initialization. Setting the size of the first generation population n, generally, n is between 30 and 60, and randomly producing an individual set P_{i} ($i=1,2,3…n$) as the first generation population; set the...
maximum genetic algebra M.

Step 2: Selecting individuals. It is also known as individual assessment stage, i.e., carrying out fitness assessment on the individuals respectively with fitness function to select the individuals with good fitness and weed out those with poor fitness. Fitness function is f (also known as objective function), then $f(P_i)$ is the fitness of individual P_i.

$$e(P_i) = \frac{f(P_i)}{\sum_{i} f(P_i)}.$$ \hspace{1cm} (1)

If P_i is selected, Formula 1 shall be used to calculate P_i’s inheritance frequency in the next generation. As known from (1), when $f(P_i)$ is large, its inheritance frequency in the next generation will be large; when $f(P_i)$ is small, its inheritance frequency in the next generation will be small; that is to say, the factor determining the inheritance frequency in the next generation lies in the fitness of the population where the individual is in.

Step 3: Crossover operation. This algorithm is similar to the biological hybridization in the nature, the process where the two parent generations conduct genic hybridization and recombination to produce the filial generation. Crossover operation is the core of genetic algorithm as well as the main way to produce the filial generation. Firstly, randomly select the same positions of two individuals in the parent generation to hybridize them in line with crossover probability. This method can be simply interpreted by the following individuals. There are two individuals S_1 and S_2, where $S_1=111000$, $S_2=000111$. According to the hybridizing rule, the two parent generations reciprocal interchange half of their information to recreate the filial generation $S_1=000000$ and $S_2=111111$.

Step 4: Mutation operation. According to the mutation principle of biology, this is the process during which mutation is conducted on local information of individuals in the parent generation with small probability event, and the mutant is passed onto the next generation through mutation operation.

For instance, for individual in parent generation $S=111111$, mutant of parent generation $S=100111$ can be obtained through mutation 2 and 3, and the mutant is passed on to the next generation as the new parent generation through cross operation.

A next generation population can be obtained through step 2, step 3 and step 4.

Step 5: Judgment termination condition. In case the fitness of the optimal individuals surpasses the threshold value given in advance, then inheritance shall stop. In case the fitness of the optimal individuals is still larger than the given threshold value, then the operations in step 2, step 3 and step 4 shall be continued, until meeting the maximum genetic algorithm or being larger than the given threshold value.

2.2 QUANTUM GENETIC ALGORITHM

Step 1: Population initialization. According to formula

$$P_i = \begin{bmatrix} \cos(t_{i1}) & \cos(t_{i2}) & \cdots & \cos(t_{in}) \\ \sin(t_{i1}) & \sin(t_{i2}) & \cdots & \sin(t_{in}) \end{bmatrix}.$$ \hspace{1cm} (2)

The first generation population shall be formed by the n chromosomes produced randomly. Set the change value of the step length of initial rotation angle as θ_0, and set the probability of mutant chromosomes in each generation as mutation probability p_m.

Step 2: Solving spatial alternations. Map the approximate solution represented by each chromosome to continuous optimization problem equation by means of unit space $I_m=[-1,1]^n$

$$\min f(x) = f(x_1, x_2, \ldots, x_n)$$

$$\text{s.t. } a_i \leq x_i \leq b_i; i = 1, 2, \ldots, n.$$ \hspace{1cm} (3)

Solve space Ω, and calculate the fitness of each chromosome according to formula

$$\text{fit}(x) = C_{\text{max}} - f(x).$$ \hspace{1cm} (4)

Record the optimal solution of the very generation as \hat{x}_0, record the chromosome individual set of the very generation as \hat{p}_0. Record the optimal solution of the previous generation as X_0. Record the chromosome individual set of the previous generation as p_0. If fit (\hat{x}_0) $> fit$ (x_0), then $p_0 = \hat{p}_0$; if fit (\hat{x}_0) \leq fit (x_0), then $p_0 = \hat{p}_0$.

Step 3: for each quantum bit on each chromosome in the population, set the corresponding quantum bit in p_0 as the target, determine the size of the rotation angle in line with Formula (2) according to the rotation angle orientation, and update the quantum bit by means of the quantum rotating gate.

Step 4: carry out mutation on each chromosome in the population according to mutation probability by means of quantum negation gate.

Step 5: Return to Step 2 for circulative calculation until meeting the condition of convergence or the algebra reaches the maximum limitation [8, 9].

3 Researches on the optimal scheduling of Wind-PV-ES power generation system

The basic requirement of electrical power system is safe and reliable, economical and practical as well as superior quality of voltage. The requirement of economic
development on electrical power system increases year by year, meanwhile, electrical power system also sees earth-shaking changes year by year. Apart from traditional thermal power generation, a group of emerging operational modes of electrical power system are growing up gradually. Meanwhile, some new problems also occur accordingly [10]: environmental destruction problems are still unsolved, the users’ electricity demand surpasses the transmission capacity of the grid, the users’ requirement on the voltage quality of the grid is increasingly high, disturbance problem of the huge grid is increasing prominent, the maximum capacitance of the system turnaround cannot cater to the users’ high load electricity demand, the users’ technology for electric energy management lags behind etc.

At the beginning of this century, the US became the first to suffer from electricity shortage. The demand of users in some regions surpassed the generating capacity of power plants, which led to repeatedly power failure in those regions. After that, many countries in the world suffered from the problem of short supply of power plants to some different extents. China has seen power rationing phenomenon in many regions for many consecutive years since 2002, power shortage is particularly serious in those first-tier cities such as Beijing, Shanghai and Guangzhou etc. in summer. Electrical power system lags behind the users’ electricity demand in respect of transmission capacity and system scheduling link. Moreover, this contradiction will continuously exert an influence worldwide in a long period, which will bring a long-term challenge for the operation of electrical power system [11].

Currently, electrical power system lacks of efficient compensation method and device for active power, while traditional method is to use standby generators, which has slow response speed. In electrical power system, in case of system failure, the standby generators cannot make corresponding change quickly enough, therefore, the stability of electrical power system cannot be guaranteed. Serious system failure may break down the electrical power system.

Energy storage technology is a kind of technology applied in electrical power system in early stage. This technology can solve the problem of unbalanced power supply of the grid to some extent. Currently, the main functions of energy storage technology in electrical power system include increasing the stability of electrical power system, improving power supply quality and voltage peak-load shaving etc.

The working principle of energy storing device is when the electrical load of the users are low, the energy storing device can charge as the load, and when the electrical load of the users are at the peak, the energy storing device can work as the power generating means [12]. This method can reduce the power consumption in electrical grid, and play the role of load shifting for the voltage in the grid, thus satisfy the stable work of the electrical power system. In addition, compared with diesel generators, energy storing device is provided with the advantages of low electricity cost and fast response speed etc. [13].

4 Probability distribution of the output by wind power, photovoltaic power and energy storage system

4.1 PROBABILITY DISTRIBUTION OF THE OUTPUT BY WIND GENERATOR UNITS

The data in literature [14] indicates that the variation of wind speed with time can meet Rayleigh distribution:

\[f(v) = \frac{v}{\sigma_w^2} \exp\left(-\frac{v^2}{2\sigma_w^2}\right), \quad \] (5)

where \(\sigma_w = \left(\frac{\pi}{2}\right)^{1/2} v \), is the distribution parameter, \(v \) is the speed at a certain moment.

The generating power of wind generator units is as shown in Figure 3.

![FIGURE 3 The generating power of wind generator units](image)

The expression of the model that the wind generators units convert wind power is:

\[
 P_w = \begin{cases}
 0 & \text{if } 0 \leq v(t) \leq v_{ci} \text{ or } v(t) \geq v_{out} \\
 av(t) + b & \text{if } v_{ci} \leq v(t) \leq v_r \\
 P_n & \text{if } v_{r} \leq v(t) \leq v_{out}
 \end{cases}
\] (6)

where

\[
 a = \frac{P_{wr}}{v_r - v_{ci}}, \\
 b = -av_{ci}.
\] (7) (8)

In the expression: \(v_{ci} \) is for cut-in wind speed, \(v_r \) is...
for rated wind speed, $v_{w_{\text{max}}}$ is for cut-out wind speed, and $P_{w_{\text{max}}}$ is for the rated power.

$$E(P_w) = a\left[-v_r \exp\left(-\frac{v_r^2}{2\sigma_w^2}\right) + \int_{-\infty}^{\infty} \frac{v_r^2}{2\sigma_w^2} \Phi\left(\frac{v_r}{\sigma_w}\right) - \Phi\left(\frac{v_c}{\sigma_w}\right) \right] - \frac{P_{w_{\text{max}}}}{2}\left[\exp(-\frac{v_{\text{out}}^2}{2\sigma_w^2}) - \exp(-\frac{v_r^2}{2\sigma_w^2})\right],$$

$$E(P_w^2) = 2a^2\sigma_w^2\left[\frac{v_r^2}{2\sigma_w^2} + 1\right]\exp\left(-\frac{v_r^2}{2\sigma_w^2}\right) - \frac{v_r^2}{2\sigma_w^2} + 1\right]\exp\left(-\frac{v_r^2}{2\sigma_w^2}\right) + 2ab\left[-v_r \exp\left(-\frac{v_r^2}{2\sigma_w^2}\right) + v_{\text{in}} \exp\left(-\frac{v_c^2}{2\sigma_w^2}\right)\right] - \frac{P_{w_{\text{max}}}}{2}\left[\exp(-\frac{v_{\text{out}}^2}{2\sigma_w^2}) - \exp(-\frac{v_r^2}{2\sigma_w^2})\right].$$

The expectancy value of the output power of the wind generator units $E(P_w)$ and second order origin moment.

\[P_{w_{\text{max}}}(t) = \text{max}(\eta \cdot P_{w_{\text{max}}}).\]

To sum up, the expectation of the output power of photovoltaic power generator units $E(P_v(t))$ is:

$$E(P_v(t)) = \frac{\alpha}{\alpha + \beta} P_{v_{\text{max}}}(t).$$

The second order origin moment of the output power of photovoltaic power generator units $E(P_v^2(t))$ is:

$$E(P_v^2(t)) = \frac{\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)} P_{v_{\text{max}}}(t).$$

Thus, the variance of the output power of photovoltaic power generator units $D(P_v(t))$ is:

$$D(P_v(t)) = \frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} P_{v_{\text{max}}}(t).$$

5 Model of energy storing device

5.1 OBJECTIVE FUNCTION

While ignoring the power consumption in power grid transmission (or attribute this part of energy consumption to power consumption at client side), the users’ service power of the electrical power system during t time interval is $P_L(t)$, the output power of the wind generator units is $P_w(t)$, the output power of photovoltaic power
generator units is $P_e(t)$, the sum of the powers in t time
interval is recorded as power output fluctuation $P(t)$:

$$P(t) = P_L(t) - P_S(t) - P_W(t) - P_e(t),$$

when the system energy storing device charges, $P_e(t)$
will be a negative value; when the energy storing device
discharges, $P_e(t)$ will be a positive value [19,20].

Assume N times of scheduling shall be carried out for
the system, then the average value of power output
fluctuation due to system scheduling is:

$$P_{avg} = \frac{1}{T} \sum_{t=1}^{T} P(t).$$

Through the above-mentioned analysis, the
expectation of the power output fluctuation during the
time interval of N times of scheduling everyday can be
set as the objective function, and its function expression
is:

$$
\text{min } F(P(t)) = E\left[\frac{1}{T} \sum_{t=1}^{T} (P(t) - P_{avg})^2\right] = E\left[\frac{1}{T} \sum_{t=1}^{T} P^2(t) - \frac{1}{T} \sum_{t=1}^{T} P(t)\right]^2
= \frac{1}{T^2} E^2\left(\sum_{t=1}^{T} P(t)\right),
$$

(21)

where

$$E\left(\sum_{t=1}^{T} P(t)\right) = E\left(P_L(t) - P_S(t) - P_W(t) - P_e(t)\right) = \left(P_L(t) - P_e(t)\right)^2 + E\left(P_W^2(t)\right) + E\left(P_S^2(t)\right) - 2E\left(P_L(t)\right) - 2E\left(P_S(t)\right) - 2E\left(P_W(t)\right).$$

(22)

$$E^2\left(\sum_{t=1}^{T} P(t)\right) = \sum_{t=1}^{T} E^2\left(P(t)\right).$$

(23)

$$E^2\left(\sum_{t=1}^{T} P(t)\right) = \sum_{t=1}^{T} E\left(P(t)\right)^2.$$ (24)

Substitute (22), (23), (24) in to expression (21), the
objective function of the model can be obtained.

5.2 CONSTRAINT CONDITION

5.2.1 Installed capacity of the energy storing device

The electrical energy stored by the energy storing device
cannot exceed the upper and lower limits of the capacity

$$\text{EES}_{min} \leq \text{EES(t)} \leq \text{EES}_{max}.$$ (20)

In the expression, EES(t) is the electrical energy stored in the energy storing device at the end of t time interval; EES$_{max}$ and EES$_{min}$ are the upper and lower limits of energy storage [21].

5.2.2 Constraint of the charge-discharge power of energy storing device

The charge-discharge power of energy storing device
must be less than the maximum discharge power of the
energy storing device, i.e. $|\text{PRES}(t)| \leq \text{PES}_{max}.$

In the expression, PRES$_{max}$ is the maximum high charge and discharge power of the energy storing device.

5.2.3 Constraint of energy balance

$$\text{EES}(t) = \text{EES}(t-1) - \text{PRES}(t) \cdot \Delta t.$$
6.1 RESULTS OF GENETIC ALGORITHM OPTIMIZATION

Parameters of genetic algorithm: take the population size as 200, crossover probability as 0.8, mutation probability as 0.1, evolution algebra as the 500th algebra, the variable number as 24, which represent the charge and discharge condition of the energy storing device per hour in the 24 hours every day. According to the said model, the following changing condition of objective function with the evolution algebra shall be obtained, which is as shown in Figure 4. The optimal charge and discharge time is as shown in Figure 5.

![Figure 4](image)

FIGURE 4 The changing condition of objective function value obtained by means of genetic algorithm

The final objective function value is converged to 1.8305 × 10^4.

6.2 RESULTS OF QUANTUM GENETIC ALGORITHM OPTIMIZATION

Parameters of quantum genetic algorithm: take the population size as 200, rotation angle length as 0.001π, evolution algebra as the 500th algebra, the variable number as 24, which represent the charge and discharge condition of the energy storing device per hour in the 24 hours every day. According to the previous discussion, the following changing condition of objective function with the evolution algebra shall be obtained, which is as shown in Figure 6. The optimal charge and discharge time is as shown in Figure 7.

![Figure 6](image)

FIGURE 6 The changing condition of objective function of by means of quantum genetic algorithm

The final objective function value is converged to 1.2424 × 10^4.

The results show that, reasonably arranging the charge and discharge time of the energy storing device can minimize the fluctuation of the system, thus making the system more stable. In the model established in this paper, it’s obvious that quantum genetic algorithm is superior to genetic algorithm, with the optimization results obtained by quantum genetic algorithm more reasonable. This indicates that quantum genetic algorithm has broad application prospect and efficient optimization efficiency.
7 Conclusions and prospect

The model constructed in this paper takes into consideration the complementary characteristics among the power generations systems, and obtains the optimal scheduling scheme by means of genetic algorithm and optimized genetic algorithm. Reasonable charge and discharge for the energy storing device can effectively improve and even solve the deficiencies in respect of power generation by renewable resources, which can effectively improve the stability of the system’s output voltage. In the model constructed in this paper, the assumption is wind speed subject to Rayleigh distribution and solar illumination intensity subject to Beta distribution, the objective function is power output fluctuation, corresponding constraint conditions are set, and the optimal scheduling scheme is obtained by means of genetic algorithm and quantum genetic algorithm. The experimental results show that the optimal scheduling scheme obtained by means of quantum genetic algorithm is superior to that obtained by means of traditional genetic algorithm. The quantum genetic algorithm adopted in this paper is also a relatively new optimization algorithm whose application field is very small; however, seen from some respects in this paper, the effectiveness of quantum optimization algorithm can completely surpass traditional algorithm, and can be widely applied.

References

[2] Xiong Liang, Zou Xuan 2010 Research on the Control Method of Direct-drive Wind Power System Electrical Measurement & Instrumentation 47(530) 31-4

Authors

Yin Wenliang, born in November, 1983, Yongchuan District, Chongqing city, P.R. China

- **Current position, grades:** Lecturer, China of Chongqing Water Resources and Electric Engineering College.
- **University studies:** B.Sc. of Engineering in Hydrology and Water Resources Engineering from Guizhou University in China. M.Sc. from Guizhou University in China.
- **Scientific interest:** Hydrology, water resources, hydropower planning.
- **Publications:** More than 10 papers published in various journals.
- **Experience:** Teaching experience of 8 years, 5 scientific research projects.

Xiang Maoqing, born in May, 1971, Zhong County, Chongqing city, P.R. China

- **Current position, grades:** Professor level senior engineer China of Zhong County Water Supplies Bureau.
- **University studies:** Graduated from the water conservancy and Hydropower Engineering Sichuan Province Wanxian water conservancy and electric power professional school in 1992 in China.
- **Scientific interest:** Water conservancy and hydropower planning, water conservancy and hydropower construction project.
- **Publications:** More than 30 papers published in various journals.
- **Experience:** 18 years of experience in water conservancy and Hydropower engineering, 15 scientific research projects.