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In this paper, a scheme based on data mining and relationships exploration is presented for security level assessment of 
transient stability. The proposed scheme can select the optimal variables as input features by detecting the relationship between 
critical clearing time (CCT) and each variable in a large power flow data set. The data set is created based on a series of power flow 
simulation and fault simulation in the software PSS/E. The relationships exploration statistical tool used is based on the maximal 
information coefficient (MIC) and the Pearson product-moment correlation coefficient (PPMCC). The variables selected are 
corresponding to the relationships highly ranked by MIC and PPMCC, including linear relationships and especially nonlinear ones. 
These relationships are also shown in the paper and some of them are explained from the perspective of power system operation.  
If the measured values of these variables are obtained in real-time from wide area measurement system (WAMS), the CCT can  
be estimated in real time since its relationships with these variables are explored. Then the security level of transient stability can  
be assessed for a new operation state. The scheme is tested on a 21-bus system provided by PSS/E and various test results indicate 
the scheme is accurate and effective, as well as the way to select input features is more intelligent than the current techniques. 
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NOMENCLATURE 

 
PGi Active power of generators at bus 
QGi Reactive power of generators at bus 

Vi Voltage amplitude of bus 
θi Voltage phase angle of bus 

Pij Active power from bus to bus 
Qij Reactive power from bus to bus 
Sij Apparent power from bus to bus 

Pi_LOAD_PQ/I/Y Active power from bus to constant power, current, or impedance load 
Qi_LOAD_PQ/I/Y Reactive power from bus to constant power, current, or impedance load 
Si_LOAD_PQ/I/Y Apparent power from bus to constant power, current, or impedance load 

Pi_X Active power from bus to equipment 
Qi_X Reactive power from bus to equipment 
Si_X Apparent power from bus to equipment 
I%i_j Load rate percent of the transmission line between bus and bus 

I%i_j_1 Load rate percent of the first transmission line between bus and bus 
I%i_j_2 Load rate percent of the second transmission line between bus and bus 

I%i_X Load rate percent of the equipment at bus 
PLOSSi_j Active power loss of the transmission line between bus and bus 
QLOSSi_j Reactive power loss of the transmission line between bus and bus 

PLOSSi_j_1 Active power loss of the first transmission line between bus and bus 
QLOSSi_j_1 Reactive power loss of the first transmission line between bus and bus 
PLOSSi_j_2 Active power loss of the second transmission line between bus and bus 
QLOSSi_j_2 Reactive power loss of the second transmission line between bus and bus 
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1.  Introduction 
 

Security level assessment of transient stability is essential to the power system operation and 
control [1]. There has been a continually increasing interest and investigation into security level 
assessment of transient stability [2]–[4]. Transient stability or large disturbance rotor angle stability is 
concerned with the ability of the power system to maintain synchronism when subjected to a severe 
disturbance, such as a short circuit on a transmission line. At present security scanning and assessment for 
power system mainly rely on a lot of fault simulation. Considering the large scale of current power 
system, different types of equipment, the real-time changing load and changing generator output, the 
enumerated probabilistic fault simulation analysis method is not able to provide real-time assessment 
results or effective control measures information of improving the security level. In general, a single 
simulation method cannot meet the demand of intelligent decision for the power system control. 
Therefore, there is a pressing need to develop fast online security assessment method which could analyse 
the level of security and forewarn the system operators to take necessary preventive actions in case need 
arises [5], [6]. 

The security level assessment of transient stability is a problem with inherent complexity, non-
linearity, uncertainty and the need for online monitoring. Seeking and establishing the mapping 
relationships between the power system operation state monitoring data and security level of transient 
stability based on knowledge engineering technology and data mining [7–9] is a very attractive idea. It is 
built on a large number of accumulated samples, which relies on fault simulation scan of transient 
stability. It is designed to discover the implicit relationships in the fault scan results and power flow 
information, which may be useful to assess security level. This security level assessment idea makes up 
for the deficiency of simulation scan. First of all, once the security level assessment rules or model have 
been established by offline data mining, the computation speed of online security assessment will be fast. 
Secondly, considering that power flow of power system can be easily observed, adjust and control, it will 
be convenient to improve the security level based on the relationships and it plays a role of aid decision 
making. However, it still faces many challenges to achieve direct security assessment based on operating 
information and data mining. We need to figure out how the power flow distribution and steady-state 
operating information of the system affect the security level of transient stability under a given fault. 
Another challenge is: the WAMS of a large power system may collect a huge amount of power flow and 
operating data, which not only contains features of high correlation for security level, but also the ones of 
weak correlation. How to effectively select the dimensions of the input feature, extract and classify the 
high correlation features, and eliminate redundant features is a key step in the security level assessment 
based on the artificial intelligence theory[10–12]. The purpose of feature selection is to select and classify 
high correlation features from a large number of original features. It requires reducing the dimension and 
minimum information loss of representing the research target. By selecting the features highly associating 
with the research target, the purpose of the d  – dimensional feature extracted from the D  – dimensional 
feature space )( Dd <<  can be achieved [13], [14].  

A lot methods have been applied to the transient stability assessment, such as artificial neural 
networks(ANN) [15], pattern recognition techniques [16], decision trees [17], and fuzzy neural networks 
[18]. Some optimisation algorithms such as simulated annealing algorithm and ant colony algorithm are 
also applied to transient stability assessment [19]–[21], and its purpose is to choose better input features. 
In [15], [22], ANN is adopted and correct estimation results are got. However, the input features used in 
the paper may not be the optimal ones and the size of selected features is not a small number for its test 
system. For a large system, it is necessary to select a small number of optimal input features from the 
massive features. The methods in these papers may fail because of the curse of dimensionality. In [20], 
[21], the number of variables in the optimal variable group given by optimisation algorithm is small, 
which reduce the dimension well. However, the final accuracy is not particularly high. Moreover, the new 
additional variable cannot be directly given by optimisation algorithm when the assessment accuracy 
needs to be improved. In [23], [24], the CCT in a case of assumption fault is calculated precisely with a 
short time, but the calculation time-consuming still will increase rapidly and cannot meet the needs of 
online assessment if the size of the actual power system is huge or with even more uncertain faults. In 
[17], [18], transient stability prediction accuracy for a fault is relatively high, but the security level 
assessment of transient stability for normal steady-state operation state is not given. 

The online assessment scheme presented in this paper is based on relationships exploration in  
a large data set of offline power flow simulation and fault simulation. The optimal features are selected 
based on the implicit relationships explored in the data set. The relationships between these variables  
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and security level of transient stability are presented and explained. Finally, the optimal variables will be 
applied to online assessment scheme for power system security level of transient stability. The way to 
select features is different from the conventional optimisation algorithms of feature selection, and it can 
explain the variables group given by optimisation algorithm to a certain extent. The number of input 
features in the scheme can be chosen freely, which is based on the needed assessment accuracy. It can 
overcome the curse of dimensionality of large-scale power systems. The applicability will not be 
influenced by the change of the structure and scale since input features selected are based on data 
statistics and mining. The scheme has a certain requirement for the number of samples of the previous 
offline simulation. Steps of the scheme are shown on Figure 1. 

 
Figure 1. Assessment scheme 

 
In the proposed approach, the results of power flow simulation and fault simulation in PSS/E are 

used to create a large data set, which include all kinds of operation variables and CCT. The relationship 
between CCT and each variable is explored and given scores by the maximal information coefficient 
(MIC) and Pearson's product moment correlation coefficient (PPMCC). The relationships highly scored 
determine their variables will be selected, and these variables are regarded as the optimal input features. 
The relationships highly scored are also presented and explained in the paper. Then the paper presents an 
estimation method using the optimal input features. The scheme is tested on a 21-bus system provided by 
PSS/E to assess security level for a lot of new operating points. The results of the assessment are verified 
to be correct. For real time application, the data of input features can be obtained from phase 
measurement units (PMUs). The scheme is economical since it requires a relatively small number of 
PMUs.  

This paper is organized as follows: Section 2 provides a detailed statement of the problem and 
some supporting mathematical methods. Section 3 introduces the method to create a large data set based 
on simulation. Section 4 explores the relationships of variables and CCT. Section 5 presents the 
estimation method of CCT and security level assessment of transient stability. Section 6 concludes the 
paper. 

 
2.  Problem Statement and Supporting Mathematical Methods 
 
2.1.  Critical Clearing Time (CCT) 
 

Given a certain fault, the transient stability of the Power system is usually described with the 
critical clearing time (CCT). The system with a longer CCT is considered to have a higher security level 
of transient stability. CCT can be used as the index for transient stability assessment. The delay in fault 
clearing from the CCT means loss of synchronous operation of the generators in the power system. 
Compared with other indices, CCT is easy for operators to understand how stable the power system is 
during operation. 

 
2.2.  Maximal Information Coefficient (MIC) 

 
MIC is a measure of dependence for two-variable relationships and it captures relationships both 

functional and not in large data sets. The concept is presented recently by the paper [25]. MIC belongs to 
a larger class of maximal information-based nonparametric exploration statistics for identifying and 
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classifying relationships. MIC is applied to the data sets of biology and has detected novel relationships. 
In this paper, MIC is introduced into the field of power system and it is used to explore the relationships 
of CCT and lots of operation variables in power system operation. 

MIC is based on the idea that if there is a relationship between two variables, then a grid can be 
drawn on the scatter plot of the two variables that partitions the data to encapsulate the relationship. MIC 
can give a score to measure the relationship between two variables based on the data pairs of variables. 
MIC can capture a wide range of interesting relationships, not only to specific function types (such as 
linear, parabolic, or sinusoidal), but also to even all functional relationships. For equally noisy 
relationships of different types, MIC can give similar scores to them. 

Given a finite set D of ordered pairs, the x-values of D are partitioned into x bins and the y-values 
of D are partitioned into y bins, allowing empty bins. Such a pair of partitions can be called an x-by-y 
grid. Given a grid G, let GD  be the distribution induced by the points in D on the cells of G.  
The distribution on the cells of G is obtained by letting the probability mass in each cell be the fraction of 
points in D falling in that cell. For a fixed D, different grids G result in different distributions GD . For a data 
set D of two-variable, the MIC of their relationship is given by (1), (2). 

For a finite set 2RD ⊂ and positive integers x, y. 
 

)(max),,(*
GDIyxDI = . (1) 

 
Where the maximum is over all grids G with x columns and y rows, and denotes the mutual 

information of .The MIC of two-variable data with sample size n and grid size less than is given by 
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Where for some. 
In the research, is used because it's found to work well in practice [25]. MIC falls between 0 and 1. 

Some properties of MIC are as follows. 
1)  MIC assigns scores that tend to 1 to all never-constant noiseless functional relationships. 
2)  MIC assigns scores that tend to 1 for a larger class of noiseless relationships. 
3)  MIC assigns scores that tend to 0 to statistically independent variables. 
 

2.3.  Pearson’s Product Moment Correlation Coefficient (PPMCC) 
 
In statistics, PPMCC [26] is used to measure the linear correlation degree between two variables X 

and Y. In the field of natural sciences, the coefficient is widely adopted to detect the linear relationships in 
variables. In this paper, PPMCC is specially used to evaluate the degree of linearity for the relationship of 
a variable between CCT. For samples ),( ii YX , a kind of expression for PPMCC is expressed as  
the mean of standard score, which is given by (3). 
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Where n is the size of samples, X  is the mean of samples, and XS  is the standard deviation of 
samples. 

PPMCC falls between -1 and 1. Some properties of PPMCC are as follows. 
1)  If 0>ρ , it shows that the two variables are positive correlative. 
2)  If 0>ρ , it shows that the two variables are negative correlative. 
3)  The larger the absolute value of ρ  is, the stronger linear relationship between the two 

variables exists. 
4)  If 0=ρ , it shows that the two variables are not linear correlative, but there may be another 

relationship between the two variables (such as a curvilinear association). 
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3.  Creating a Large Data Set of CCT and Operation Variables in Power System  
Based on Simulation 

 
In the practice of power system operation, the accidents of transient stability failure are unusual.  

It leads to the lack of instability data samples, which cannot satisfy the requirements of data mining. 
Therefore, simulation is usually used to obtain samples. A well-known software package named PEE/S is 
used to create the necessary data set. PSS/E is a software tool used for power system, and it can be used to 
analyse transient stability [27]. This paper uses Python programming language in PSS/E to achieve the 
follows: Initialise the data of loads randomly and the matching data of generators' output in a normal 
range. Solve the power flow of operating sample point, and then choose the convergent ones. Make  
a series of three-phase instantaneous short circuit fault simulation test at a set place and calculate its CCT 
for every selected operating sample point. The run will end until the set number of samples is satisfied. 
The program flow chart is illustrated on Figure 2.  

 

?i N≤

 

Figure 2. Program flow chart for creating a large data set of power flow and CCT based on simulation in PSS/E 
 
Some explanatory notes for the program flow chart on Figure 2 are as follows. 
1)  N  can be set according to the size of samples needed and 150=N is used in this paper.  
2)  A lot of physical variables are extracted from the power flow results of the system: generator 

active power and reactive power of every generator; voltage amplitude and phase angle of every bus; 
active power, reactive power, apparent power, active power loss and reactive power loss of every branch; 
load rate percentage of every branch; active power and reactive power from a bus to an equipment. 

3)  According to the experience of the power system operation, some other variables are added 
because they are reasonably suspected to have a relationship with CCT. The additional variables are 
based on some fundamental variables in the power flow results. They are: phase angle difference between 
any two generators at steady-state, the maximum and minimum of absolute value of phase angle 
difference between any two generators at steady-state. 

In the paper, a 21-bus test system [28] provided by PSS/E is used, which is shown on Figure 3. 
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Figure 3. 21-bus test system provided by PSS/E 
 

In the test system, 470 physical variables are finally extracted after eliminating all of the constant 
variables. Then a large data set of power flow variables and CCT is created, which is a matrix with 471 
rows (470 physical variables and CCT) and 150 columns. The three-phase instantaneous short circuit fault 
simulation test is as follow: a fault occurs at the head of the first line between the bus 205 and the bus 203 
when st 0= , then disconnect the line after a set time. 
 
4.  Exploring the Relationships of Power Flow Variables and CCT  
 
4.1.  Top Relationships Explored by MIC and PPMCC 
 

MIC and PPMCC are applied to detect the relationships in the data set. A statistical tool is 
provided by the paper [25], which can calculate MIC and PPMCC of each relationship. Table 1 shows  
the top 1% of relationships by MIC and Table 1 shows the top 1% of relationships by PPMCC.  
The relationships highly ranked by PPMCC have high degrees of linearity. A relationship highly ranked 
by MIC show a certain relationship between the two variables, and it doesn't necessarily have a high 
degree of linearity. 
 
Table 1. Top 1% of relationships by MIC 
 

Var1 Var2 MIC MIC Rank PPMCC )(ρ  PPMCC Rank 
CCT S152_151_1 0.778 1 -0.813 109 
CCT S152_151_2 0.778 2 -0.813 110 
CCT PLOSS151_152_1 0.773 3 -0.821 80 
CCT PLOSS151_152_2 0.773 4 -0.821 81 
CCT PLOSS152_151_1 0.773 5 -0.821 82 

 
Table 2. Top 1% of relationships by PPMCC 
 

Var1 Var2 PPMCC )(ρ  PPMCC Rank MIC MIC Rank 

CCT Q3005_3003_1 0.885 1 0.684 62 
CCT Q3005_3003_2 0.885 2 0.684 63 
CCT Q3004_3002 0.884 3 0.673 74 
CCT Q3004_152 -0.882 4 0.722 44 
CCT θ101 -0.874 5 0.672 86 

 
Specially, the relationship whose MIC rank is 1 in Table 1 and the ones whose PPMCC rank is 1 

in Table 2 are shown successively on Figure 4 and Figure 5. These relationships are implicit in mass data, 
which are not easy to be found directly. After these relationships are detected out, generally reasonable 
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explanation can be given for the relationships from the perspective of power system. The variable 
S152_151_1 is selected as an example, which represents the apparent power of the first line from bus 152 
to bus 151 on Figure 6. In order to explain the relationship conveniently, a case can be imagined: with the 
increase of power system loads, the power on the transmission line will increase; when load rating of the 
system is low, the increase of load doesn't make CCT decrease significantly; when load rating of the 
system is high, a slight increase of load will make CCT decrease significantly. 

 

  
Figure 4. Scatter plot of the variable S152_151_1 and CCT Figure 5. Scatter plot of the variable Q3005_3003_1 and CCT

 
4.2.  MIC versus PPMCC 

 
Figure 6A shows that MIC versus PPMCC for all pair-wise relationships in the data set. In 

different areas of Figure 6A, different kinds of relationships can be found. Some examples are as follows. 
1) Figure 6B: Both PPMCC and MIC yield low scores for unassociated variables. It indicates no 

specific relationship exist between the variable θ3001 and CCT.  
2) Figure 6C: Ordinary linear relationships score high under both MIC and PPMCC tests. It 

indicates an obvious linear relationship between the variable θ101 and CCT. 
3) Figure 6D: Relationships detected by MIC but not by PPMCC, because the relationships are 

nonlinear. It indicates a kind of nonlinear relationship between the variable the variable 
Q205_201 and CCT. 

 

    

    

Figure 6. Application of MIC and PPMCC to the data set. (A) MIC versus PPMCC for all pair-wise relationships in the data set. 
(B)–(D) Examples of relationships from (A) 
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4.3.  Top Nonlinear Relationships 
 

In order to discover the nonlinear relationships of variables and CCT comprehensively and 
quickly, the statistic MIC – 2ρ  is adopted. For a relationship, a larger MIC and a smaller ρ  get a larger 

MIC – 2ρ . Table 3 shows the top 0.5% of relationships by MIC – 2ρ , and the relationships are shown on 
Figure 7. 
 
Table 3. Top 0.5% of nonlinear relationships by MIC – 2ρ  

 

  

Figure 7. Scatter plot of the top 0.5% of nonlinear relationships selected by MIC – 2ρ  

 
Some explanations for the relationships on Figure 7 from the perspective of power system are as 

follows. 
1)   Q205_201 represents the reactive power from bus 205 to bus 201. At a general operation state, 

the value of this variable is minus and will decrease gradually with the increase of power system loads. 
Compared to an operation state of low load rating, the decrease of CCT will become faster when the 
system is operated at a state of high load rating. Therefore the relationship between the variable 
Q205_201 and CCT is that shown on Figure 7A. 

2)   Q205_206 represents the reactive power from bus 205 to bus 206. When load rating of the 
system is low, the value of this variable will appear in the interval (–500, 0) randomly. When load rating 
of the system is high, the variable will tend to its minimum value because there is a maximum reactive 
power limit for the generator at bus 206.Therefore the relationship between the variable Q205_206 and 
CCT is that shown on Figure 7B.  

 
5.  Estimation of CCT and Test Results 
 
5.1.  Selecting Input Features 
 

After exploring the relationships of variables in power flow and CCT, these relationships can be 
used to estimate CCT and assess the security level of transient stability for a new operation state.  
The values of variables can be obtained from WAMS in practice. Obviously, the accuracy of estimation is 
affected by the variables selected and measured. The variables selected should be the ones who have 
obvious relationships with CCT. Moreover, the total number M  of the variables selected should be 
appropriate. Setting M  too low can lead to inaccurate estimation ranges, while setting M  too low 
means the increase of economic cost in engineering application because of too many measuring points. 
An appropriate selection is given based on tests: the top 1% of relationships by MIC, the top 1% of 
relationships by PPMCC, and the top 0.5% of nonlinear relationships by MIC– 2ρ . Therefore the total 
number of relationships selected is 12 in the paper. It is should be noted if a variable always remains  
the same with another one (such as S152_151_1 and S152_151_2 in Table 1), one of them will be 

Var1 Var2 MIC –
2ρ  MIC –

2ρ  Rank MIC PPMCC( ρ ) 

CCT Q205_201 0.395 1 0.618 0.471 
CCT Q205_206 0.302 2 0.520 0.465 
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eliminated and a variable ranking behind the two variables will be selected to guarantee M = 12.  
The variables finally selected are in Tables 3–5, which are the optimal ones to be input features. 
 
Table 4. Variables finally selected from the ranking list by MIC 
 

Var1 Var2 MIC MIC Rank 
CCT S152_151_1 0.778 1 
CCT PLOSS151_152_1 0.773 3 
CCT QLOSS151_152_1 0.773 7 
CCT QLOSS201_202 0.763 11 
CCT P152_151_1 0.760 13 

 
Table 5. Variables finally selected from the ranking list by PPMCC 
 

Var1 Var2 PPMCC ( )ρ  PPMCC Rank 
CCT Q3005_3003_1 0.885 1 
CCT Q3004_3002 0.884 3 
CCT Q3004_152 0.882 4 
CCT θ101 0.874 5 
CCT Q3005_3006 0.871 8 

 
5.2.  Program Flow Chart for Estimation of CCT 
 

For each input variable, the idea of estimation is as follow. As it is illustrated on Figure 8,  
the measurement value of the variable a205_201 is x0when the system is operated at a new point. In all 
the points on Figure 8, the smallest value of x–axis is Xmin  and the largest value is Xmax. All the points 
with x–axis in the range (x1,x2) are searched out. The smallest value of y–axis in these points is y1 and  
the largest value is y2. The CCT of the new operation state can be considered in the range (y1,y2). 
Equations (4)–(8) are given for Figure 8. Specially, 3% is used in (5) and 0.5 is used in (6), which are 
found to work well in practice. A too wide search range leads to an imprecise estimation result. If the search 
range is too narrow, maybe no result is returned because the sample size is finite.  

 

 

Figure 8. Estimation method for each variable 
 

minmax XXL −=  (4) 
%3*Ll =  (5) 
ll *5.0'=  (6) 

lXX −= 01  (7) 
lXX += 02  (8) 

 
The selected variables are used to estimate CCT and the program flow chart is shown on Figure 9. 

The parameter t is introduced to update l when needed, which can increase the imprecision of estimation 
because the search range is narrower with a smaller l. If an estimation range (y1,,y2) given at the first 
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search satisfies Y2 – Y1 > 0.01, the existence of parameter t can give it a more accurate search opportunity 
with the updated l. The method can try to make the final estimation range satisfies 2 1 0 .0 1Y Y− ≤ , 
which will be more precise. 

( )2 _1 2 _ 2, ,y y( )1_1 1_ 2, ,y y
( )_1 _ 2..., ,M My y

{ }1 1_1 2 _1 _1 _1max , ,..., ,..., ,i MY y y y y=

{ }2 1_ 2 2 _ 2 _ 2 _ 2max , ,..., ,...,i MY y y y y=
 

Figure 9. Program flow chart of estimating CCT 
 
5.3.  CCT estimation results and security level assessment of transient stability 

 
In the tests, possible new operation states are set stochastically. 15 of them are randomly selected 

and shown in Table 6. Some explanatory notes for Table 6 are as follows. 
1) R is the final estimation range of a new point, which is given by the program with the 12 

selected variables as input features. 
2) The span of R is shown to measure the precision of estimation range. 
3) S is the value given by simulation, which is used to verify the correctness of estimation. 
4) Occasionally, CCT is not visual enough to describe security level of transient stability for the 

power system operators. Therefore, samples can be classified as some levels according to their 
distribution. In this case, 5 levels are as follows: Level 1: 0.35–0.36; Level 2: 0.33–0.34; Level 3: 0.30–0.32; 
Level 4: 0.28–0.29; Level 5: 0.26–0.27. Level in Table 6 is security level assessment of transient stability 
for a new operation state. 
 
Table 6. Estimation results of new operation states 
 

No. R(s) Span of R(s) S(s) Level 
1 0.27 0 0.27 5 
2 0.27–0.28 0.01 0.27 5 
3 0.28 0 0.28 4 
4 0.28–0.29 0.01 0.29 4 
5 0.29–0.30 0.01 0.30 3 
6 0.30–0.31 0.01 0.31 3 
7 0.32–0.33 0.01 0.32 3 
8 0.32–0.33 0.01 0.33 2 
9 0.34 0 0.34 2 
10 0.35–0.36 0.01 0.35 1 
11 0.35–0.36 0.01 0.36 1 
12 0.33–0.34 0.01 0.34 2 
13 0.27–0.28 0.01 0.28 4 
14 0.29 0 0.29 4 
15 0.31–0.32 0.01 0.31 3 
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In general, each simulation value S  for new operation state is in the range R  and this 
demonstrates the correctness of estimation ranges. S  is slightly out of the range in a very few tests, 
which is due to the finiteness of previous samples. After the statistics of more tests, the possibility of S  
being out of the range R  is lower than 1%. 
 
6.  Conclusions 

 
This paper proposes a novel online transient stability assessment scheme based on the connotative 

relationship exploration in a large data set, which includes CCT and lots of different operation variables 
in power system. The scheme includes: a series of power flow simulation and fault simulation, creating a 
large data set of variables and CCT, giving scores to the relationships and ranking them, using the linear 
and nonlinear relationships to estimate CCTs for new operation states. The data set is created with a series 
of simulation in PSS/E. The relationships of variables and CCT are given scores by the statistical methods 
based on MIC and PPMCC. Some highly ranked linear and nonlinear relationships are detected out, 
shown, explained, and then used for estimation. The estimation results are verified to be accurate and can 
be used to assess the security level of transient stability. 

Different from conventional feature selection methods, the input features are selected from a great 
number of variables based on data mining and relationships exploration in this paper. It will be more 
intelligent and efficient than conventional optimisation algorithms because each feature is given a score 
and ranked clearly. The applicability of the scheme will not be influenced by the change of the structure 
and scale since it based on data statistics and mining. The estimation results are with high precision, 
which relies on the total number of previous operation samples to a certain extent. The estimation of CCT 
and the online security level assessment of transient stability will be important basis for system operators 
to change operation state to improve the security level in practice. 
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