
 
 

Computer Modelling 

 20

Computer Modelling and New Technologies, 2010, Vol.14, No.2, 20–28 
Transport and Telecommunication Institute, Lomonosova 1, LV-1019, Riga, Latvia 
 

FORECASTING TRAFFIC LOADS:  
NEURAL NETWORKS vs. LINEAR MODELS 

 
I. Klevecka 

 
Institute of Telecommunications / Riga Technical University  

12 Azenes St., Riga, LV-1048, Latvia 
Phone: +371 26006970. E-mail: klevecka@inbox.lv 

 
The main aim of the research was to produce the short-term forecasts of traffic loads by means of neural networks  

(a multilayer perceptron) and traditional linear models such as autoregressive-integrated moving average models (ARIMA) and 
exponential smoothing. The traffic of a conventional telephone network as well as a packet-switched IP-network has been analysed. 
The experimental results prove that in most cases the differences in the quality of short-term forecasts produced by neural networks 
and linear models are not statistically significant. Therefore, under certain circumstances, the application of such complicated and 
time-consuming methods as neural networks to forecasting real traffic loads can be unreasonable.  
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1. Introduction 
 

The reliable forecasts of traffic generated by users (subscribers) allow planning the capacity of 
transmission channels, avoiding the overload and sustaining the optimal level of quality of service. A rapid 
development of packet-switched networks and the transformation of traditional telephone networks into 
multi-service systems offer new opportunities to a user (subscriber) and expand his/her scope of activities. 
Though, not only the architecture of telecommunications networks but also the statistical nature of traffic 
has been changed. It has been proven that empirically observed packet-switched traffic is characterized by 
self-similarity which comes along with such statistical effects as long-range dependence and a slowly 
decaying variance. That led to a belief (quite ungrounded) that traditional linear methods are not suitable 
for solving a forecasting task because of their focusing on short-range dependant processes. 

In the analysis of dynamic behaviour of IP-networks the mechanism of neural networks is gaining 
more and more acceptance. Neural networks provide additional opportunities in modelling non-linear phenomena 
and recognizing chaotic behaviour of processes. On the other hand, neural networks are often criticized 
for a very large number of parameters to define in empirical way, difficulties in producing and replicating 
a stable solution and the risk of losing generalization ability due to over-training. Besides, neural 
networks are very time-consuming methods which also require powerful technical facilities. Therefore, it 
is important to define if there is a necessity to apply neural networks and, if so, under which conditions. 

Numerous papers dedicated to the application of neural networks to forecasting packet-switched 
traffic have been published. However, most of them solve a trivial task of forecasting with more or less 
success and did not pay much attention to evaluating the statistical properties of analysed traffic traces. 
None of them also carry out a complex comparative analysis of forecasts produced by neural networks 
and traditional linear methods.  

Taking that into account the main goals of the research were specified as: 
− to test the ability of traditional linear models such as autoregressive-integrated moving 

average models (ARIMA) and exponential smoothing to produce the short-term forecasts of 
real network traffic; 

− to compare the quality of the forecasts produced by traditional linear methods with those 
which are produced by means of neural networks (a multilayer perceptron);  

− to specify the conditions under which the mechanism of neural networks has to be applied to 
forecasting the traffic of telecommunications networks. 

 

From practical point of view the traffic of packet-switched network is of most interest. However, 
there are only few research papers dedicated to the prediction of conventional telephone traffic by means 
of neural networks. Therefore, the task of verifying the ability of neural networks to predict telephone 
traffic was set as well.  
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2. Background of Forecasting Network Traffic 
 

Solving the task of traffic modelling and forecasting, we usually assume that its values are expressed 
by discrete time series. A discrete time series is defined as a vector {x(t)}of observations made at regularly 
spaced time points t = 1, 2, …, N. Unlike the observations of a random variable, the observations of a time 
series are not statistically independent. This relation sets up the specific base for forecasting an analysed 
variable (i.e. for producing the estimate )(ˆ LNx +  of an unknown value x(N+L) taking into account  
the historical values x(t1), x(t2),…, x(tN)). 

The methods of traffic forecasting are defined by the ITU-T recommendations E.506 and E.507 [0][0]. 
Even the recommendations are partly obsolete and are supposed to be used for forecasting the traffic of 
ISDN-networks, some of the methods still can be applied to modern telecommunications networks.  
In particular, these methods are autoregressive-integrated moving average (ARIMA) models and exponential 
smoothing. 

As it has been already mentioned, the empirically observed traffic of packet-switched networks is 
self-similar in a statistical sense, over a wide range of time scales. Consider a discrete time stochastic process or 
time series {x(t)}, t∈Z, where x(t) is the traffic volume – measured in packets, bits or bytes – at time 
instance t. Under the assumption of stationarity, {x(t)} is called exactly second-order self-similar with 
Hurst parameter H (0.5 <H <1) if for all k ≥ 1 1[0] 
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where γ(k) – the autocovariance function of {xt}; k – time shift (lag); H – Hurst exponent. 
Objects possessing self-similar quality are called fractals. For aggregated processes2, γ(k) = γ(m)(k) 

for all m ≥ 1, where m – the aggregation period. Thus, second-order self-similarity assumes that correlation 
structure exactly or asymptotically preserves under time aggregation.  

Two important statistical features of self-similar processes are long-range dependence and a slowly 
decaying variance.  

Let r(k) = γ /σ2 denote the autocorrelation function. Then, {x(t)} is called the stationary process with 
long-range dependence, if under the assumption 0.5 < H <1, r(k) asymptotically behaves as ck−β for 
0 <β <1 (and β = 2 − 2H), where c > 0 is a constant. It this case r(k) is assumed to be non-summable [0]: 
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That is, the autocorrelation function of long-range dependent processes decays slowly – i.e., 
hyperbolically, in contrast to short-rage dependant processes with autocorrelation function decaying quickly. 

In its turn, the variance of aggregated self-similar processes decays more slowly as compared to 
the magnitude inverse to the sample size. For 0.5 < H <1, H ≠ 0.5, it holds [0]  
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with 0 < β <1 (and H = 1 − β / 2). 
It implies that for rather large m, a self-similar process is visually more uneven and irregular (i.e. possesses 

the property of high variance) than a short-range dependant process. 
The degree of long-range dependence is usually evaluated by means of a Hurst exponent [0].  

In network traffic theory the notions of self-similarity and long-range dependence are often 
interchangeable but it is worth noting that not all self-similar processes are long-range dependant and vice 
versa. However, asymptotic second-order self-similarity assumes long-range dependence by the restriction 
0.5 < H <1, and vice versa [0].  

Due to the influence of long-range dependence, a forecasting process of self-similar traffic is more 
complicated as compared to the prediction of traditional telephone traffic which is characterized by short-range 
                                                 
1 The notion of asymptotic self-similarity also exists nad can be found in [0].  
 
2 To formulate scale-invariance, in traffic theory the aggregated process x(m) at aggregation level m is defined as 
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)( )(1)(  [0]. That is, {x(t)}is portioned into non-overlapping blocks of size m, their values are averaged, 

and i is used to index these blocks.  
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dependence. Non-linear neural networks have won popularity in the prediction of packet-switched traffic. 
However, numerous research papers dedicated to the application of neural networks usually miss the fact 
that a fractal nature of packet-switched traffic has a prominent influence only in the case of measurements 
on a large scale – over the aggregation periods varying from milliseconds to approximately 5–15 minutes 
(see Fig. 2.1). 

  
Figure 2.1. Statistical effects of packet-switched traffic depending on a time scale [0, with author’s changes] 

 
Such a fine sampling scale is often unreasonable from the point of view of time series forecasting. 

In this case the selection of the relevant statistical model can be complicated due to a strong influence of 
autocorrelation between distant observations of a times series as well as due to the influence of extraneous 
noises and anomalous outliers, which unavoidably entail the measurements on a large scale. Besides,  
an aggregation/sampling period also determines a forecasting horizon for which reliable forecasts can be 
produced. In other words, the possible forecasting horizons for time series aggregated over the period of 
one second or 24 hours are different. At present neural networks are not suitable for real-time forecasting; 
therefore aggregation on a fine scale does not make sense. Taking that into account and following the 
ITU-T Recommendation E.492 [0], it is advised to average measurements of network traffic over 15-minutes 
and/or one-hour intervals. Over these sampling periods, human behaviour and technical progress are those 
factors that influence the statistical properties of traffic more than self-similarity (Fig. 2.2).  
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Aggregation Period = 60 sec.
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Aggregation period = 300 sec.
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Figure 2.2. Measurements of real packet-switched traffic over different aggregation periods 
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Therefore, we can often speak about the possibility of applying traditional linear methods of time 
series forecasting. 

The main accent of this research was put on the application of neural networks (i.e. a multilayer 
perceptron) for forecasting the changes of the traffic of both traditional telephone networks and packet-
switched IP-networks. The forecasts produced by non-linear models were compared to those which were 
produced by traditional linear models. For the purpose of this comparison the models of ARIMA and 
exponential smoothing were chosen (as the methods recommended by the ITU-T). If the comparative 
analysis of forecasts produced by neural networks and linear models do not reveal any statistically 
significant differences, then the application of such a complicated and time-consuming method as neural 
networks does not make sense. 
 
3. The Methods of Traffic Forecasting 

 
3.1. Neural Networks 
 

Neural networks are massively parallel, distributed processing systems representing a new 
computational technology built on the analogy to the human information processing system. A neural 
network consists of a large number of simple processing elements called neurons or nodes. Each neuron is 
connected to other neurons by means of directed communication links, each with an associated weight. 
The weights represent information being used by the network to solve a problem.  

Neural networks are suitable for solving various tasks including time series forecasting. The temporal 
structure of an analysed sample is usually built into the operation of a neural network in implicit way 
when a static neural network is provided with dynamic properties [0]. In this case the input signal is 
usually uniformly sampled, and the sequence of synaptic weights of each neuron connected to the input 
layer of the network is convolved with a different sequence of input samples.  

For a neural network to be dynamic, the memory must be given, which may be divided into short-term 
and long-term memory. Long-term memory is built into a neural network through supervised learning, 
whereby the information content of the training data set is stored in the synaptic weights of the network. 
Short-term memory is usually build into the structure of a neural network through the use of time delays 
which can be implemented at the synaptic level inside the network or at the input layer of the network. 

Short-term 
memory

Output
y(n)

_

+

d(n)

Static neural 
network

Input
x(n)

Error
signal

 
a) b) 

 
Figure 3.1. Temporal processing using neural networks: 

a) nonlinear filter built on a static neural network [0]; b) time lagged feedforward network (TLFN) [0] [0] 
 
Temporal pattern recognition requires processing of patterns that evolve over time, with the response 

at a particular instant of time depending not only on the present value of the input but also on its past 
values. Figure 3.1(a) shows the block diagram of a nonlinear filter built on a static neural network. Given 
a specific input signal consisting of the current value x(n) and the p past values x(n – 1), …, x(n – p) stored 
in a delay line memory of order p, the free parameters of the network are adjusted to minimize  
the training error (the mean square error) between the output of the network, y(n), and the desired 
response d(n) [0]. 

The structure shown on Figure 3.1(a) can be implemented at the level of a single neuron or a network 
of neurons. A time lagged feedforward network is shown on Figure 3.1(b). It consists of a tapped delay 
memory of order p and a multilayer perceptron (MLP). A standard back-propagation algorithm can be 
used to train this type of neural networks. 
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3.2. ARIMA Models 
 

The processes of autoregression, moving average and their combinations refer to the class of linear 
models, as all the relations between the observations and random errors of a time series are expressed by 
means of linear mathematical operations.  

In contrast to simulated traffic, the real traffic usually incorporates seasonal and / or cyclic components. 
In this case one should pay his / her attention to the seasonal modifications of ARIMA.  

The ARIMA is the Box-Jenkins variant of conventional ARMA models which is predestinated for 
applications to non-stationary time series that become stationary after their differencing. In the case of 
seasonal ARIMA models, seasonal differencing is also applied in order to eliminate a seasonal component 
of period s.  

If d and D are non-negative integers, then {x(t)} is a seasonal ARIMA(p,d,q)(P,D,Q) process 
given by [0]: 
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where  
s – period of a cyclic component;  
B – delay operator; 
φ(B) – autoregressive operator of order p;  
θ(B) – moving-average operator of order q; 
Φ(Bs) – seasonal autoregressive operator of order P; 
Θ(Bs) – seasonal moving-average operator of order Q; 
∇ – differencing operator given by ∇ = ∇1 = 1 – B; 
∇s – seasonal differencing operator given by ∇s = 1 – Bs 

ε(t) – white noise. 
The operators φ(B), θ(B), Φ(Bs) and Θ(Bs) have to satisfy the conditions of stationarity and 

reversibility. The indexes p, P, q and Q are introduced here in order to remind about different orders of 
the operators. The description of the ARIMA process incorporating two and more periodic components is 
analogous to this. 

 
3.3. Exponential Smoothing 
 

The method of exponential smoothing is the generalization of moving average technique. It allows 
building the description of a process whereby the latest observations are given largest weights in 
comparison with earlier observations, and the weights are exponentially decreasing. 

There exist different modifications of exponential smoothing, which are suitable for modelling and 
forecasting the time series incorporating linear/non-linear trends and/or seasonal fluctuations. Such models 
are based on the decomposition of time series. 

Just as in the case of ARIMA models, the task of forecasting real network traffic requires applying 
the seasonal modifications of exponential smoothing. In this research the model of exponential smoothing 
with additive seasonality was implemented to constant-level processes. Its mathematical expression is 
given by [0]:  
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where 
α – smoothing parameter for the level of the series; 
S(t) – smoothed level of the series, computed after xt is observed; 
δ – smoothing parameter for seasonal factors; 
I(t)– smoothed seasonal index at the end of the period t; 
p – number of periods in the seasonal cycle. 

In this case the forecast is calculated as follows [0]: 
 

)()()(ˆ lstItSlxt +−+= , (3.3) 
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where )(ˆ lxt  – forecast for l periods ahead from origin t. 
Network traffic measured over long time periods (several years) usually incorporates not only 

seasonal fluctuations but also a linear trend. Then it is necessary to use seasonal trend modifications of 
exponential smoothing, the description of which can be found in [0]. 
 
4. Practical Research 

 
The object of the research is the time series of different length and aggregation period which characterize 

the real traffic of both traditional telephone networks (POTS) and packet-switched IP-networks. The main 
aim was to analyse the statistical properties of time series and to develop such a neural network which is 
suitable for modelling an underlying process and producing a reliable forecast for a pre-defined 
forecasting horizon. The selection of the relevant neural network closely followed an advanced algorithm 
introduced in [0].  

The measurements were taken on the transportation level and represent three variables: 
− the transmission rate of outgoing international traffic of the IP-network; 
− the transmission rate of total outgoing traffic of the IP-network; 
− the intensity of the total serviced load of the conventional telephone network.  
Following the ITU-T Recommendation E.492 [0] the initial traffic measurements of each variable 

were averaged over 15-minutes and one-hour periods. The size of the basic sample was equal to 9 and 
12 weeks for the first variable, and to 9, 12 and 18 weeks for two other variables. Thus, sixteen time series 
were produced in total. The forecasting horizon (i.e. the size of a testing sample) for each time series 
varied from one to 14 days with the step of one day.  

All the analysed time series are characterized by the presence of seasonal components with periods 
of 24 hours and one week. It was revelled by applying a Fourier analysis. The estimates of the Hurst 
exponent vary from 0.65 for telephone traffic to 0.85 for packet-switched traffic. Such values indicate  
the persistence of analysed time series and exploit the potentialities of their further forecasting. The specification 
of the developed neural network is displayed in Table 4.1.  
 
Table 4.1. The main parameters of the developed neural network3 
 

Stage Parameter / Procedure Parameter Value / Procedure Description  

Type of topology Time-lagged feedforward network (multilayer 
perceptron) 

Number of hidden layers 1 
Number of hidden neurons Varying from 1 to 10  
Number of output neurons 1  

Selection  
of network 
topology 

Activation function Hidden layer – hyperbolic tangent; 
output layer – linear function 

Number of training epochs 600  

Training algorithm Back propagation (100 epochs) & 
conjugate gradient descent (1000 epochs) 

Error function Mean square error 
Learning rate 0.1 
Momentum term 0.3 

Method of initialisation of weights and biases Randomised values from a uniform distribution with a 
range of [-0.5;0.5] 

Number of times to randomise weights and 
biases 100 

Methods to prevent over-learning Cross-validation, weight regularization [0] 

Training 

Stopping criterion Training error is invariable  during 50 epochs 
The parameters of in-sample evaluation  R, RMSE, MAE, MAPE, AIC, BIC 
Diagnostic testing of residuals Lagrange multiplier type test [0] , χ2 - test 

In-sample and 
out-of-sample 
evaluation The parameters of out-of-sample evaluation RMSE, MAE, MAPE, the Diebold-Mariano criterion 

 
Neural networks belong to so called heuristic methods. It means that appropriate values of most 

parameters of the developed neural network had to be evaluated in experimental way. The architecture of 

                                                 
3 Notes: R – correlation coefficient, MAE – mean square error, RMSE – root mean square error, MAPE – mean absolute percentage 
error, AIC – Akaike’s information criterion, BIC – Bayesian information criterion. 
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a neural network was defined as follows. According to the universal approximation theorem [0]  
the number of hidden layers was equal to one. The size of the input window was equal to the largest period 
of the cyclic component identified by means of a Fourier analysis. The number of output neurons was 
equal to one and implied a one-step ahead forecasting. In order to identify the appropriate number of 
hidden neurons all the architectures with the number of hidden neurons varying form one to ten have been 
tested and verified. 

A two-stage training process was implemented. During the first stage a multilayer perceptron was 
trained by applying the backpropagation during one hundred epochs, with learning rate 0.1 and 
momentum 0.3. It usually gives the opportunity to locate the approximate position of a reasonable minimum. 
During the second stage, a long period of conjugate gradient descent (1000 epochs) is used, with a stopping 
window of 50, to terminate training once convergence stops or over-learning occurs. Once the algorithm 
stops, the best network from the training run is restored. 

The final neural network was chosen in compliance with the method suggested in [0]. According 
to that, among competing neural networks the model with uncorrelated residuals and the smallest value of 
the information criterion (IC) has to be chosen for further forecasting.  

The quality of the forecasts was estimated by means of such standard parameters as root mean 
square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). Besides, 
the Diebold-Mariano test [0] was applied in order to evaluate relative accuracy of forecasts and to reveal 
any statistically significant differences between the forecasts produced by neural networks and traditional 
linear methods such as a seasonal ARIMA and seasonal exponential smoothing. The main advantage of 
this test is that it is non-parametric and can be used even if forecasting errors do not comply with the classic 
requirements, i.e. they are non-normally distributed, autocorrelated or serially correlated. 

For the sake of space saving, only one empirical example illustrating the production of the forecasts 
for the time series (B) is shown here. However, the main conclusions have been drawn taking into account 
the whole set of produced forecasts and the complete results of verification. 

As a result of verification procedures, three models have been chosen for further forecasting of  
the time series (B). They are a time lagged multilayer perceptron with one hidden neuron MLP 672-1-1,  
a seasonal model SARIMA(1,0,6)(0,1,1)672, and the model of exponential smoothing with additive seasonality 
and parameters α = 0.19 и γ = 0.00. The final forecasts produced by these models over a forecasting horizon 
up to two weeks (1344 observations) are shown on Figure 4.1. 
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Figure 4.1. Final pseudo-forecasts of the transmission rate of  IP-traffic produced by different models 
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We can see in Table 4.2 that the values of the standard estimates of the quality of produced 
forecasts do not differ significantly. Therefore it is hard to say which model performs better than others. 
The Diebold-Mariano test [0] was implemented in order to identify statistically significant differences 
between produced forecasts for three forecasting horizons such as 24 hours (96 observations), a week 
(672 observations) and two weeks (1344 observations). It is shown in Table 4.3 that there are no 
statistically significant differences between forecasts produced by the neural network and SARIMA over 
the forecasting horizons of 24 hours and one week. However, as a forecasting horizon increases, the quality 
of forecasts produced by the neural network deteriorates. Thus, the SARIMA model outperforms  
the neural network over a forecasting horizon of two weeks. On the other hand, forecasts produced by  
the neural network perform better than those produced by exponential smoothing over the forecasting 
horizons of 24 hours and one week. Nevertheless, over the horizon of two weeks, the Diebold-Mariano 
test does not reveal any statistically significant differences between forecasts produced by a neural network 
and the model of exponential smoothing. We can also see that SARIMA outperforms seasonal exponential 
smoothing independently of a forecasting horizon. Therefore, in this particular case, it is reasonable to 
select the SARIMA model for further forecasting. It is a simpler and much less time-consuming method 
as compared to non-linear neural networks but provides relatively the same preciseness of forecasts. 

Regarding other analysed time series, in most cases the comparison of forecasts produced by 
neural networks and linear models did not reveal any statistically significant differences.  
 
Table 4.2. Standard estimates of the quality of pseudo-forecasts (forecasting horizon =1344 observations or 14 days) 
 

 
Parameters 

Models RMSE MAE MAPE, % 

Neural Network  2.34 1.87 25.91 

SARIMA 2.18 1.76 24.45 

Seasonal Exponential Smoothing 2.30 1.75 20.48 

 
Table 4.3. The evaluation of statistically significant differences between final pseudo-forecasts by means of the Diebold- Mariano test   

96 obs. 
(24 h) 

672 obs. 
(7 days) 

1344 obs. 
(14 days) 

 
Forecasting Horizon 

 
Models DM pDM DM pDM DM pDM 

Neural Network vs. SARIMA -0.44 0.67 0.80 0.42 -4.83 0.00 

Neural Network vs. Seasonal Exponential Smoothing 3.95 0.00 6.05 0.00 -0.75 0.45 

SARIMA vs. Seasonal Exponential Smoothing 3.58 0.00 6.95 0.00 3.02 0.00 

Notes: DM – the Diebold-Mariano statistics,  pDM – the significance level of a DM statistics 
 
Conclusions 
 

Both traditional linear methods and neural methods are accurate in producing short-term forecasts 
of traditional telephone traffic and packet-switched traffic. The results of the research show that in most 
cases the differences in quality between forecasts of network traffic produced by neural networks and 
linear models are not statistically significant. Therefore, contrary to popular belief, the use of such 
complicated and time-consuming methods as neural networks is not always reasonable. 

It is important to keep in mind that the strong influence of fractal nature of packet-switched traffic 
is apparent only for the measurements taken on a very large-scale, usually over the periods up to 5–15 
minutes. If according to the ITU-T recommendations the measurements of real network traffic are 
averaged over largest periods, the seasonal variations (due to the human behaviour) and monotonous 
trends (due to the influence of technical progress) are usually becoming those factors which affect the 
statistical properties of packet-switched traffic to a greater extent than self-similarity. Despite the fact that 
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traffic traces can still poses the property of some “burstiness”, the influence of long-range dependence is 
usually weakened. In this case, linear models can be applied with much success as well.  

In the course of the research it was also revealed that a neural network can model and forecast 
seasonal time series without prior deseasonalization. In this case the most important parameter to define is 
the size of the input window which has to be equal to the largest period of a seasonal component. The task 
of forecasting network traffic incorporating periodic fluctuations requires focusing on the seasonal 
modifications of linear models as well. Just as in the case of neural networks, the correct identification of 
the periods of seasonal components is important for successful modelling and forecasting. 
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