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1. Introduction  
 

Let us consider a real space X for that concrete point will be marked by х, for plane it is two-
dimensional vector (it is available to consider another dimension too). A distance *),( xxl  is determined 
for points x and x*, that satisfies usual conditional of distance axioms: 0),( =xxl , 0*),( ≥xxl , 

*),'()',(*),( xxlxxlxxl +≤ . 
Some objects are arranged in the space (for example men, animals, stationers). Let us name as х–

object, the object that is at the point х. The density of object arrangement is described by known density 
function f(x) ≥ 0, so  

∫
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=
x

xxf .1)(  

Some service stations must be arranged in the space, their number is k. It is necessary to determine 
those coordinates .,...,, )()2()1( kxxx  If a х–object is serviced by i–th station then corresponding loss is 
equal to ( ))(i

x xg , for example ( ) ).( )()( ii
x xxgxg −=  Let us call )(oxg  as loss function and suppose 

that it is a symmetry according to zero ( )( )( i
x xg = )( )( i

x xg − ) and convex  (down). 
All amount of service for the х–object is deviated between various service stations according to 

inverse proportion of the distances from the х–object and the station. Most precisely, a part of х–object 
service that belongs to the i-th station is  

( )( )
( )( )∑ −

−

=

j

j

i

i
xxl

xxlx 1)(

1)(

,
,)(δ .  (1) 

Now a problem can be formulated as follows: to find coordinates )()2()1( ,...,, kxxx  of station 
arrangement that minimizes the total loss:  
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The article is organized in the following way. At first one-dimensional case of space X and the 
corresponding example is considered. Then we consider two-dimensional case. The article ends by some 
conclusion remarks. The Appendix contains the analytical investigation of the simplest one-dimensional 
case when k = 1 and density f(x) and loss function )(oxg  are symmetric functions. 
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2. One-Dimensional Case 
 

At first we consider a case when space X is real axis R = (- ∞, ∞). We will use a gradient method 
for the minimization of criterion (2). For that aim let us calculate a corresponding gradient. For a partial 
derivative of (2) we have the following expression: 
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Now we are able to rewrite the gradient of D as 
T
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To accelerate a convergence of the gradient method we use a two-stage procedure. At the first 
stage we use component-wise (coordinate-wise) modification of the gradient method. It means that a 
sequence of cycles is preformed. Each cycle contains k iterations. During the i-th iteration (j = 1, 2, …, k) 
function (2) is minimized with respect to coordinate )( jx , at the same time other coordinates do not 
change. For that minimization the gradient method with gradient (3) is used. The cycles end when the 
change of function (2) is mall. In the second stage we calibrate the obtained result by using the usual 
gradient method with gradient (4).   
 
3. Example of One-Dimensional Case 
 

Let density function be a mixture of normal distributions with means )()2()1( ,...,, rμμμ  and 

variances ( ) ( ) ( )2)(2)2(2)1( ,...,, rσσσ , and weighted coefficients rppp ,...,, 21  ( )1...21 =+++ rppp : 
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Further let us use the following distance function and loss function:   

zxzxl −=),( ,  (6) 

2)(),( zxzxg −= .  (7) 

Then we have the following derivatives: 
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Now we are able to use formula (3) for optimization.  
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Let us consider the following numerical data: k = 4,  r = 9 and  

( )Tp 17.013.004.006.01.005.015.02.01.0= , 

( )T17.1013.874.706.71.605.405.015.30=μ , 

( )T17.113.274.106.271.005.115.12.12.0=σ . 

The Figure 1 contains an according graphic of density function f(x). 
 

 
 

Figure 1. Plot of function f(x) for one-dimensional case 
 

We begin the first stage of the optimization procedure with the values of coordinates 
( )Txxxxx )4()3()2()1( ,.,=  = ( )T7421 . It corresponds to D = 9.766 value of criterion (2). Table 1 contains 

the results of sequential cycles.  
 
TABLE 1. Results of sequential cycles for one-dimensional case 
 

Iteration number 0 1 2 3 4 5 
)1(x  1 1 1 1 0.174 0.174 

)2(x  2 2 2 3.259 3.259 3.259 

)3(x  4 4 6.207 6.207 6.207 6.207 

)4(x  7 9.809 9.809 9.809 9.809 10 

( ))4()3()2()1( ,., xxxxD  9.766 9.327 8.818 7.727 7.494 7.468 
 

We see that minimal value of criterion (2) is equal to D = 7.468 that is calculated by 

x = ( )T10207.6259.3174.0 . 

Further we perform the second stage of the optimization procedure and finally get minimal value  
D = 7.445 that corresponds to coordinates  

x = ( )T035.10428.6176.3193.0 . 

 
4. Two-Dimensional Case 
 

Now we consider a case when space X is real plane ),(),(2 ∞−∞×∞−∞=R . Then the coordinates 

of an object are ( )Txxx 21= , coordinates of the j-st station are ( )Tjjj xxx )(
2

)(
1

)( = . Now instead of 
scalar derivative (3) we have two-dimensional vector  
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Analogously to (3) we have for partial derivative (i = 1, 2): 
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Now instead of (4) we have the (2×k)-matrix of the partial derivatives  
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For the optimization we again use the two-stage procedure. At the first stage the component-wise 
(coordinate-wise) modification is used as follows. During the j-th iteration (j = 1, 2, …, k) function (2) is 
minimized with respect to both coordinates of the j-st station ( ))(

2
)(

1
)( jjj xxx = , at the same time other 

coordinates do not change. According to the gradient method we move along the gradient with respect to 
( ))(

2
)(

1
jj xx , recalculating the one continually. At the second stage we work with the full gradient (11). 

 
5. Example of Two-Dimensional Case 
 

As before, let density function be a mixture of two-dimensional normal distributions with means 
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Further let us use the following distance function and loss function:   
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Now we are able to use formula (3) for optimization.  
Let us consider the following numerical data: k = 4, r = 9 and 

( )17.013.004.006.01.005.015.02.01.0=p , 
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σ , 

( )17.013.074.006.06.07.015.02.00 −−−−=ρ . 

The Figure 2 contains an according graphic of density function f(x). 
 

 
 

Figure 2. Plot of function f(x) for two-dimensional case 
 

Table 2 contains the results of sequential cycles of the optimization procedure.  
 
TABLE 2. Results of sequential cycles for two-dimensional case 
 

Iteration number 0 1 2 3 4 5 
)1(

1x  0 0.961 1.099 1.134 1.212 1.190 
)1(

2x  0 1.545 2.240 1.874 2.072 1.945 
)2(

1x  3 2.703 2.944 3.130 3.099 3.079 
)2(

2x  3 0.845 1.444 2.221 1.813 2.085 
)3(

1x  6 6.115 6.170 6.303 6.361 6.487 
)3(

2x  6 5.398 5.206 4.889 4.737 4.404 
)4(

1x  8 8.141 8.194 8.303 8.335 8.381 
)4(

2x  8 7.251 7.053 6.742 6.640 6.466 

D 5.173 4.616 4.391 4.328 4.304 4.296 
 

From the Table we can see how the gradient method improves the criterion of value continually.  
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Conclusion 
 

A problem of service station arrangement in spatial space is considered. The elaborated algorithm 
of the problem solution is based on the gradient method. The considered numerical examples show its 
efficiency. The authors intend to apply the suggested approach to solving the practical arrangement 
problems.  
 
 
APPENDIX 
 

Now we will consider the simplest one-dimensional case when k = 1 (one station only) and density 
f(x) and loss function )(oxg are symmetric functions. Let f(x) have a maximal value at the symmetry 

point x = m and ( ) )( )1()1( xxgxg x −=  have minimal value g* at the symmetry point 0. Now instead of 
(2) we have the following criteria: 
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As f is a symmetric function respectively m,  f (m + x) = f (m – x), then for the sum of two points 
m+ x and m – x, we have the following sum of the integral expression in (17): 

( ).)()()(
)()()()(

)1()1(

)1()1(

xxmgxxmgxmf
xmfxxmgxmfxxmg

−−+−++=

=−−−++−+
 

The convexity of function g gives us 
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The lower limit is obtained if )1(x = m. Therefore, 
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which is obviously clear.  
 

Taking derivative with respect to )1(x and equate one to zero, we get 
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As function g has the minimum at the point 0, and then the derivative from g(x) is negative for  
x < 0 and is positive for x > 0. Therefore, 
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Obviously, the unique solution is )1(x = m. Therefore, for optimal value we have the following 
expression:  
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