HEAVY GOODS TRANSPORTATION RISK MANAGEMENT

Ramūnas Palšaitis1, Artūras Petraška2

Vilnius Gediminas Technical University
Plytines 27, Vilnius, LT-10105 Lithuania
E-mails: 1trvadyba@ti.vgtu.lt, 2arturas@transvelas.lt

The most important factor affecting the quality of transportation heavy goods is safety and security. Risk evaluation and management is one of the key issues during the planning oversize goods safe transportation and investments into transport infrastructure reconstruction. Usually it is international transportation and decision-making requires through analysis of the problem both, on the national and international scale and only then the most rational decision (transportation route) can be made with the view of the effective risk lowering, i.e. seeking the last possible reconstruction costs. The objective of the risk evaluation when investing into infrastructure reconstruction is to safeguard heavyweight or oversize goods transportation. When making the quantitative and economic assessment of the risk the theory of chances and mathematic statistics are most commonly used methods, because they are denoted to describe an event or process in case of ambiguous possibilities.

Keywords: heavy and oversize goods, transport, risk management

1. Risk Substance and Definitions

Risk definitions for the term in the literature are quite different. Risk means a potential changes in the expected result. Usually risk is associated with some probability of adverse event realization. Risk – the uncertainty associated with a certain probability, the potential of a variety of action results in the future, the probability of an unfavourable or accidental occurrence enterprise, the instability of economic situation, the uncertainties which arise, because of changes which is difficult to provide, or because of events which possibility cannot be calculated exactly (Wright et al. 1999). Risk is also defined as a decision-making situation, where is possible potential effects of volatility and there is likely to change them. Risk is uncertainty, which lies within the market economy and the company may incur losses. Possible loss is often measured by the appearance of adverse event facility. In foreign literature, the term “risk” has a quite wide definition, which often depends on results of environmental study. The studies of fundamental investment decision-making (Markowitz 1952, Sharpe 1963, Tobin 1965, Vaughan 1997) disclose the existence of the efficient line in the mean profitability-risk plane, which is measured by profitability standard deviation. The main characteristics of the efficient line is that its points – investment possibilities, measured against profitability-risk indicators, cannot be improved on account of reducing mean profitability or riskiness if the value of the collateral parameter for evaluation is not changed.

As one of the measures for the information system development and cultivation of the investment criteria adequacy is classification of decision possibilities (Rutkauskas et al. 2008), taking into account possibility efficiency and reliability as well as the level of riskiness which depends on the riskiness of the processes under analysis (interest rate, currency exchange rate and alike) and on the ability of a subject – the recipient of the risk consequences to manage it. To understand the risk just a negative sense is incorrect. Under favourable circumstances, risk can bring substantial benefits, because the assumption of low risk or risk avoidance in general, economic activity does not result a competitive advantage.

2. Risk Factors and Classification

There are many risks in competitive business world. Various authors identify and classify risk very differently. Generally speaking the unified classification is practically impossible, because of different type of activities.

Examining the risks, which influences heavyweight and oversize loads, it is appropriate to focus on risk according to their areas of influence (Figure 1). This means: technical, economical, social and political types of risk.

Technical risk – the factors determining possibilities of load carrying in technological sense. It means vehicle selection risk, the risk of selecting technologies of loading, the route length, parameters of cargo, cargo storage needs, the risk of transportation mode choice. It should be noted, that most important factor in determining the risk is parameters of the cargo (cargo dimensions and weight). Also, to term of technical risk the safety of transportation and probability of accident risk during transportation process could be attributed. Human factors affect the probability of errors, therefore, they would also be appropriate to assign to the technical risk area.
Economic risk can be attributed to the banking policy. Heavyweight and oversize loads are inevitably associated with new technology and industrial development, that’s why the role of banks in this area is very important (Labanauskas, Palsaitis. 2010). The conditions of procuring new technologies, interest rates, bank financing conditions determine development of innovative technologies and thus promote or inhibit heavyweight and oversize loads transportation. Other very important factors in this area are the competitive conditions for such loads transportation, labour costs and access in these areas in which such type of loads are transported. These factors have a significant impact on the price of heavyweight and oversize loads transportation and determine the choice how, by which ways or by which countries such loads should be carried.

Social risk means public tolerance for carrying oversize and heavyweight loads in the territory. Transportation of such loads is associated with certain restrictions in the region through which the load is moving. First of all transportation of such loads could make a significant negative impact in public/community live. Qualified labour force, expectations of community members can be defined to social risk area. Expectations of community results positive or negative attitude for transportation oversize and heavyweight loads.

Political risk depends on political attitudes to the heavyweight and oversize loads transportation process existing in certain country. Public policy could stimulate or break such processes. Government institutions are a tool which helps to control these processes. Fiscal policy (tariffs – the charges rates for using transport infrastructure, permission getting procedures, routing coordination procedures, and decision–making regulation) influenced choice of transportation mode and load transportation route. To political risk is also attributed perception of the economic development needs. Decision-making regulation shows the country’s political will. If there will not be unanimous understanding of the impact of economic development, government institutions in deciding carry or not oversize or heavyweight loads will work not coordinated. Another very important factor for such loads is transit.

These four heavy weighting and oversized loads risk areas and influence of them to transportation process could be clearly or abstract assessed. The impact of different factors can be quantified and also not all factors of risk could be controlled and measured.

3. Risk Evaluation Process

Evaluation of risk is made up of several stages (Figure 2). First stage involves diagnose of potential risk in oversize or heavyweight loads transportation process. The next step is a model of risk assessment and related data collection. Diagnose of potential type of risk is necessary to identified reasons/factors which could cause denial impact of a transport process. The evaluation of the results let’s to estimate risk reducing techniques and helps to choose a strategy for reduction negative impact.

In load transportation process the most important factor for calculating of accident probability. Evaluation of potential participants in accident can be divided into two groups of vehicles: cargo and passenger vehicles used for commercial purposes and private cars. According to the character of load carried by commercial vehicles it is appropriate to distinguish perishable, not perishable and dangerous goods. All these factors influence risk level.

Vehicles during the transportation process cause some negative affects such as delay, damaging of the load, drivers or other road users death, negative impact to the physical road condition and people, who are living in environment of road.
In transportation process of oversize and heavyweight loads it is possible temporary prohibit the movement of other transport means in order to reduce the risk in section of the route or along the route. In such case accident scheme would look like it shown on Figure 3.

Calculation of risk is always adapting to a simple and more comprehensive in its evaluation methods. In classical risk model for calculating the risk is as follows:

\[R = p \times C, \quad (1) \]

where
\[R \] – risk;
\[p \] – accident probability;
\[C \] – the consequences of an accident.
Accident probability calculation is based on the assumption that calculation unit is clear and is modelled using Poisson distribution:

\[f(k; \lambda) = \frac{e^{-\lambda} \lambda^k}{k!} \] \hspace{1cm} (2)

where
- \(e \) – is the base of natural logarithm (\(e = 2.71828 \ldots \));
- \(k \) – is number of occurrences of an event;
- \(\lambda \) – is a positive real number, equal to the expected number of occurrences during the given interval;
- \(k! \) – is the factorial of \(k \).

If heavyweight and oversize load is moving without limiting the movement of other road users in section of the route in that case it should be measured number of accidents within the road section within a given unit of time per kilometre. The annual accident rate per thousand kilometres is calculated using the following formula:

\[R_A = \frac{A \times 1000}{TNA \times 365} \] \hspace{1cm} (3)

where
- \(R_A \) – accident rate;
- \(A \) – the number of accident involving heavyweight vehicles per year;
- \(TNA \) – transportation distance.

Probability of an accident in the transportation rout depends on various factors such as load carrying frequency, heavyweight vehicle traffic, transportation distance, road technical parameters, pavement quality, daytime and seasonality (Figure 4).

Figure 4. Risk evaluation scheme

Risk evaluation scheme may include more factors. Evaluating the probability of an event needs to analyse the frequency of load carrying and travel distance.

Consequences. Consequences may be determined by the potential effect. As example could be late delivery of goods lost or damage, the number of fatalities. Evaluation of consequences in road section depends on access of data about accidents and consequences. Negative consequence per year can be calculated using the following formula:
The risk of road segment from point to point can be expressed:

\[R_{ij} = P_{ij} \times VMTPS_{ij} \times 365 \times M \times c , \]

(5)

where

- \(R_{ij} \) – risk of road segment \(i-j \), per year;
- \(P_{ij} \) – accident probability in road segment \(i-j \).

4. Conclusions

Risk management is one of the key issues during the planning oversize goods safe transportation and investments into transport infrastructure reconstruction.

Examining the risks, which influence heavyweight and oversize loads, it is appropriate to focus on technical, economic, social and political of risks.

It is necessary to identify factors which could cause denial impact of a transportation process. The oversize goods transportation risk evaluation results allows to identify risk reducing armamentarium and helps to choose a strategy of for most secure oversize goods transportation.

References